Evidence that Oxidative Stress Induces spxA2 Transcription in Bacillus anthracis Sterne through a Mechanism Requiring SpxA1 and Positive Autoregulation

Author:

Barendt Skye1,Birch Cierra1,Mbengi Lea1,Zuber Peter1

Affiliation:

1. Institute of Environmental Health, Oregon Health and Science University, Portland, Oregon, USA

Abstract

ABSTRACT Bacillus anthracis possesses two paralogs of the transcriptional regulator, Spx. SpxA1 and SpxA2 interact with RNA polymerase (RNAP) to activate the transcription of genes implicated in the prevention and alleviation of oxidative protein damage. The spxA2 gene is highly upregulated in infected macrophages, but how this is achieved is unknown. Previous studies have shown that the spxA2 gene was under negative control by the Rrf2 family repressor protein, SaiR, whose activity is sensitive to oxidative stress. These studies also suggested that spxA2 was under positive autoregulation. In the present study, we show by in vivo and in vitro analyses that spxA2 is under direct autoregulation but is also dependent on the SpxA1 paralogous protein. The deletion of either spxA1 or spxA2 reduced the diamide-inducible expression of an spxA2-lacZ construct. In vitro transcription reactions using purified B. anthracis RNAP showed that SpxA1 and SpxA2 protein stimulates transcription from a DNA fragment containing the spxA2 promoter. Ectopically positioned spxA2-lacZ fusion requires both SpxA1 and SpxA2 for expression, but the requirement for SpxA1 is partially overcome when saiR is deleted. Electrophoretic mobility shift assays showed that SpxA1 and SpxA2 enhance the affinity of RNAP for spxA2 promoter DNA and that this activity is sensitive to reductant. We hypothesize that the previously observed upregulation of spxA2 in the oxidative environment of the macrophage is at least partly due to SpxA1-mediated SaiR repressor inactivation and the positive autoregulation of spxA2 transcription. IMPORTANCE Regulators of transcription initiation are known to govern the expression of genes required for virulence in pathogenic bacterial species. Members of the Spx family of transcription factors function in control of genes required for virulence and viability in low-GC Gram-positive bacteria. In Bacillus anthracis , the spxA2 gene is highly induced in infected macrophages, which suggests an important role in the control of virulence gene expression during the anthrax disease state. We provide evidence that elevated concentrations of oxidized, active SpxA2 result from an autoregulatory positive-feedback loop driving spxA2 transcription.

Funder

Medical Research Foundation, Oregon

HHS | NIH | National Institute of Allergy and Infectious Diseases

HHS | NIH | National Institute of General Medical Sciences

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3