Generation of High-Yielding Influenza A Viruses in African Green Monkey Kidney (Vero) Cells by Reverse Genetics

Author:

Ozaki Hiroichi1,Govorkova Elena A.1,Li Chenghong2,Xiong Xiaoping2,Webster Robert G.1,Webby Richard J.1

Affiliation:

1. Departments of Infectious Diseases

2. Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105

Abstract

ABSTRACT Influenza A viruses are the cause of annual epidemics of human disease with occasional outbreaks of pandemic proportions. The zoonotic nature of the disease and the vast viral reservoirs in the aquatic birds of the world mean that influenza will not easily be eradicated and that vaccines will continue to be needed. Recent technological advances in reverse genetics methods and limitations of the conventional production of vaccines by using eggs have led to a push to develop cell-based strategies to produce influenza vaccine. Although cell-based systems are being developed, barriers remain that need to be overcome if the potential of these systems is to be fully realized. These barriers include, but are not limited to, potentially poor reproducibility of viral rescue with reverse genetics systems and poor growth kinetics and yields. In this study we present a modified A/Puerto Rico/8/34 (PR8) influenza virus master strain that has improved viral rescue and growth properties in the African green monkey kidney cell line, Vero. The improved properties were mediated by the substitution of the PR8 NS gene for that of a Vero-adapted reassortant virus. The Vero growth kinetics of viruses with H1N1, H3N2, H6N1, and H9N2 hemagglutinin and neuraminidase combinations rescued on the new master strain were significantly enhanced in comparison to those of viruses with the same combinations rescued on the standard PR8 master strain. These improvements pave the way for the reproducible generation of high-yielding human and animal influenza vaccines by reverse genetics methods. Such a means of production has particular relevance to epidemic and pandemic use.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3