Engineering the Transmissible Gastroenteritis Virus Genome as an Expression Vector Inducing Lactogenic Immunity

Author:

Sola Isabel1,Alonso Sara1,Zúñiga Sonia1,Balasch Mónica2,Plana-Durán Juan2,Enjuanes Luis1

Affiliation:

1. Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universidad Autónoma, Cantoblanco, Madrid

2. Fort-Dodge Veterinaria, Department of Research and Development, Girona, Spain

Abstract

ABSTRACT The genome of the coronavirus transmissible gastroenteritis virus (TGEV) has been engineered as an expression vector with an infectious cDNA. The vector led to the efficient (>40 μg/10 6 cells) and stable (>20 passages) expression of a heterologous gene (green fluorescent protein [GFP]), driven by the transcription-regulating sequences (TRS) of open reading frame (ORF) 3a inserted in the site previously occupied by the nonessential ORFs 3a and 3b. Expression levels driven by this TRS were higher than those of an expression cassette under the control of regulating sequences engineered with the N gene TRS. The recombinant TGEV including the GFP gene was still enteropathogenic, albeit with a 10- to 10 2 -fold reduction in enteric tissue growth. Interestingly, a specific lactogenic immune response against the heterologous protein has been elicited in sows and their progeny. The engineering of an additional insertion site for the heterologous gene between viral genes N and 7 led to instability and to a new genetic organization of the 3′ end of the recombinant viruses. As a consequence, a major species of subgenomic mRNA was generated from a TRS with the noncanonical core sequence 5′-CUAAAA-3′. Extension of the complementarity between the TRS and sequences at the 3′ end of the viral leader was associated with transcriptional activation of noncanonical core sequences. The engineered vector led to expression levels as high as those of well-established vectors and seems very promising for the development of vaccines and, possibly, for gene therapy.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3