Characterization of the Complete Genome of the Tupaia (Tree Shrew) Adenovirus

Author:

Schöndorf Eva1,Bahr Udo1,Handermann Michaela1,Darai Gholamreza1

Affiliation:

1. Hygiene-Institut der Universität Heidelberg, Abteilung Virologie, D-69120 Heidelberg, Germany

Abstract

ABSTRACT The members of the family Adenoviridae are widely spread among vertebrate host species and normally cause acute but innocuous infections. Special attention is focused on adenoviruses because of their ability to transform host cells, their possible application in vector technology, and their phylogeny. The primary structure of the genome of Tupaia adenovirus (TAV), which infects Tupaia spp. (tree shrew) was determined. Tree shrews are taxonomically assumed to be at the base of the phylogenetic tree of mammals and are frequently used as laboratory animals in neurological and behavior research. The TAV genome is 33,501 bp in length with a G+C content of 49.96% and has 166-bp inverted terminal repeats. Analysis of the complete nucleotide sequence resulted in the identification of 109 open reading frames (ORFs) with a coding capacity of at least 40 amino acid residues. Thirty-eight of them are predicted to encode viral proteins based on the presence of transcription and translation signals and sequence and positional conservation. Thirty viral ORFs were found to show significant similarities to known adenoviral genes, arranged into discrete early and late genome regions as they are known from mastadenoviruses. Analysis of the nucleotide content of the TAV genome revealed a significant CG dinucleotide depletion at the genome ends that suggests methylation of these genomic regions during the viral life cycle. Phylogenetic analysis of the viral gene products, including penton and hexon proteins, viral protease, terminal protein, protein VIII, DNA polymerase, protein IVa2, and 100,000-molecular-weight protein, revealed that the evolutionary lineage of TAV forms a separate branch within the phylogenetic tree of the Mastadenovirus genus.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3