Escherichia coli ferredoxin NADP+ reductase: activation of E. coli anaerobic ribonucleotide reduction, cloning of the gene (fpr), and overexpression of the protein

Author:

Bianchi V1,Reichard P1,Eliasson R1,Pontis E1,Krook M1,Jörnvall H1,Haggård-Ljungquist E1

Affiliation:

1. Department of Biochemistry I, Karolinska Institutet, Stockholm, Sweden.

Abstract

A specific ribonucleoside triphosphate reductase is induced in anaerobic Escherichia coli. This enzyme, as isolated, lacks activity in the test tube and can be activated anaerobically with S-adenosylmethionine, NADPH, and two previously uncharacterized E. coli fractions. The gene for one of these, previously named dA1, was cloned and sequenced. We found an open reading frame coding for a polypeptide of 248 amino acid residues, with a molecular weight of 27,645 and with an N-terminal segment identical to that determined by direct Edman degradation. In a Kohara library, the gene hybridized between positions 3590 and 3600 on the physical map of E. coli. The deduced amino acid sequence shows a high extent of sequence identity with that of various ferredoxin (flavodoxin) NADP+ reductases. We therefore conclude that dA1 is identical with E. coli ferredoxin (flavodoxin) NADP+ reductase. Biochemical evidence from a bacterial strain, now constructed and overproducing dA1 activity up to 100-fold, strongly supports this conclusion. The sequence of the gene shows an apparent overlap with the reported sequence of mvrA, previously suggested to be involved in the protection against superoxide (M. Morimyo, J. Bacteriol. 170:2136-2142, 1988). We suggest that a frameshift introduced during isolation or sequencing of mvrA caused an error in the determination of its sequence.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference31 articles.

1. The haemoglobin-like protein (HMP) of Escherichia coli has ferrisiderophore reductase activity and its C-terminal domain shares homology with ferredoxin NADP+ reductases;Andrews S. C.;FEBS Lett.,1992

2. Segregation of lambda Iysogenicity during bacterial recombination in E. coli K-12;Appleyard R. K.;Genetics,1954

3. Linkage map of Eschenichia coli K-12, edition 8;Bachmann B.;Microbiol. Rev.,1990

4. Mechanism of reductive activation of cobalamine-dependent methionine synthase: an electron paramagnetic resonance spectroelectrochemical study;Bannerjee V. R.;Biochemistry,1990

5. Routes of flavodoxin and ferredoxin reduction in Escherichia coli;Blaschkowski H. P.;Eur. J. Biochem.,1982

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3