Inhibition of NF-κB Activity by IκBβ in Association with κB-Ras

Author:

Chen Yi1,Vallee Sebastien1,Wu Joann1,Vu Don1,Sondek John2,Ghosh Gourisankar1

Affiliation:

1. Department of Chemistry and Biochemistry, University of California—San Diego, La Jolla, California 92093

2. Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599

Abstract

ABSTRACT IκBβ, one of the major IκB proteins, is only partially degraded in response to most extracellular signals. However, the molecular mechanism of this event is unknown. We show here that IκBβ exists in at least two different forms: one that is bound to the NF-κB dimer and the other bound to both NF-κB and κB-Ras, a Ras-like small G protein. Removal of cellular κB-Ras enhances whereas excess κB-Ras blocks induced IκBβ degradation. Remarkably, κB-Ras functions in both GDP- and GTP-bound states, and mutations of the conserved guanine-binding residues of κB-Ras abrogate its ability to block degradation of IκBβ. κB-Ras also directly blocks the in vitro phosphorylation of IκBβ by IKKβ. These observations suggest that IκBβ in the ternary complex is resistant to degradation by most signals. We suggest that specific signals, in addition to those that activate only IKK, are essential for the complete degradation of IκBβ.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3