Analysis of Sequence Upstream of the Endogenous H19 Gene Reveals Elements Both Essential and Dispensable for Imprinting

Author:

Thorvaldsen Joanne L.1,Mann Mellissa R. W.1,Nwoko Okechukwu1,Duran Kristen L.1,Bartolomei Marisa S.1

Affiliation:

1. Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104

Abstract

ABSTRACT Imprinting of the linked and oppositely expressed mouse H19 and Igf2 genes requires a 2-kb differentially methylated domain (DMD) that is located 2 kb upstream of H19 . This element is postulated to function as a methylation-sensitive insulator. Here we test whether an additional sequence 5′ of H19 is required for H19 and Igf2 imprinting. Because repetitive elements have been suggested to be important for genomic imprinting, the requirement of a G-rich repetitive element that is located immediately 3′ to the DMD was first tested in two targeted deletions: a 2.9-kb deletion (ΔDMDΔG) that removes the DMD and G-rich repeat and a 1.3-kb deletion (ΔG) removing only the latter. There are also four 21-bp GC-rich repetitive elements within the DMD that bind the insulator-associated CTCF (CCCTC-binding factor) protein and are implicated in mediating methylation-sensitive insulator activity. As three of the four repeats of the 2-kb DMD were deleted in the initial 1.6-kb ΔDMD allele, we analyzed a 3.8-kb targeted allele (Δ3.8kb-5′H19), which deletes the entire DMD, to test the function of the fourth repeat. Comparative analysis of the 5′ deletion alleles reveals that (i) the G-rich repeat element is dispensable for imprinting, (ii) the ΔDMD and ΔDMDΔG alleles exhibit slightly more methylation upon paternal transmission, (iii) removal of the 5′ CTCF site does not further perturb H19 and Igf2 imprinting, suggesting that one CTCF-binding site is insufficient to generate insulator activity in vivo, (iv) the DMD sequence is required for full activation of H19 and Igf2 , and (v) deletion of the DMD disrupts H19 and Igf2 expression in a tissue-specific manner.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3