Peptidoglycan Cross-Linking in Glycopeptide-Resistant Actinomycetales

Author:

Hugonnet Jean-Emmanuel,Haddache Nabila,Veckerlé Carole,Dubost Lionel,Marie Arul,Shikura Noriyasu,Mainardi Jean-Luc,Rice Louis B.,Arthur Michel

Abstract

ABSTRACTSynthesis of peptidoglycan precursors ending ind-lactate (d-Lac) is thought to be responsible for glycopeptide resistance in members of the orderActinomycetalesthat produce these drugs and in related soil bacteria. More recently, the peptidoglycan of several members of the orderActinomycetaleswas shown to be cross-linked byl,d-transpeptidases that use tetrapeptide acyl donors devoid of the target of glycopeptides. To evaluate the contribution of these resistance mechanisms, we have determined the peptidoglycan structure ofStreptomyces coelicolorA(3)2, which harbors avanHAXgene cluster for the production of precursors ending ind-Lac, andNonomuraeasp. strain ATCC 39727, which is devoid ofvanHAXand produces the glycopeptide A40296. Vancomycin retained residual activity againstS. coelicolorA(3)2 despite efficient incorporation ofd-Lac into cytoplasmic precursors. This was due to ad,d-transpeptidase-catalyzed reaction that generated a stem pentapeptide recognized by glycopeptides by the exchange ofd-Lac ford-Ala and Gly. The contribution ofl,d-transpeptidases to resistance was limited by the supply of tetrapeptide acyl donors, which are essential for the formation of peptidoglycan cross-links by these enzymes. In the absence of a cytoplasmic metallo-d,d-carboxypeptidase, the tetrapeptide substrate was generated by hydrolysis of the C-terminald-Lac residue of the stem pentadepsipeptide in the periplasm in competition with the exchange reaction catalyzed byd,d-transpeptidases. InNonomuraeasp. strain ATCC 39727, the contribution ofl,d-transpeptidases to glycopeptide resistance was limited by the incomplete conversion of pentapeptides into tetrapeptides despite the production of a cytoplasmic metallo-d,d-carboxypeptidase. Since the level of drug production exceeds the level of resistance, we propose thatl,d-transpeptidases merely act as a tolerance mechanism in this bacterium.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3