MexT Regulates the Type III Secretion System through MexS and PtrC in Pseudomonas aeruginosa

Author:

Jin Yongxin12,Yang Hongjiang3,Qiao Mingqiang2,Jin Shouguang12

Affiliation:

1. Department of Molecular Genetics and Microbiology, P.O. Box 100266, University of Florida, Gainesville, Florida 32610

2. Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China

3. Key Laboratory of Industrial Microbiology, Ministry of Education, P.O. Box 08, Tianjin University of Science and Technology, TEDA, Tianjin 300457, China

Abstract

ABSTRACT The type III secretion system (T3SS) is the most important virulence factor in Pseudomonas aeruginosa , and its expression level varies in different isolates. We studied the molecular basis for such differences in two laboratory strains, PAK and PAO1. A chromosomal clone library from the high-T3SS-producer strain PAK was introduced into the low-producer strain PAO1, and we found that a mexS gene from PAK confers high T3SS expression in the PAO1 background. Further tests demonstrated that both mexS and its neighboring mexT gene are required for the repression of the T3SS in PAO1, while the PAK genome encodes a defective MexS, accounting for the derepression of the T3SS in PAK and the dominant negative effect when it is introduced into PAO1. MexS is a probable oxidoreductase whose expression is dependent on MexT, a LysR-type transcriptional regulator. Various genetic data support the idea that MexS modulates the transcriptional regulator function of MexT. In searching for the MexT-dependent repressor of the T3SS, a small gene product of PA2486 ( ptrC ) was found effective in suppressing the T3SS upon overexpression. However, deletion of ptrC in the PAO1 background did not result in derepression of the T3SS, indicating the presence of another repressor for the T3SS. Interestingly, overexpression of functional mexS alone was sufficient to repress T3SS even in the absence of MexT, suggesting that MexS is another mediator of MexT-dependent T3SS repression. Overexpression of mexS alone had no effect on the well-known MexT-dependent genes, including those encoding MexEF efflux pump, elastase, and pyocyanin, indicating alternative regulatory mechanisms. A model has been proposed for the MexS/MexT-mediated regulation of the T3SS, the MexEF efflux pump, and the production of elastase and pyocyanin.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3