Author:
McKay Susannah L.,Portnoy Daniel A.
Abstract
ABSTRACTUpon entry into stationary phase, bacteria dimerize 70S ribosomes into translationally inactive 100S particles by a process called ribosome hibernation. Previously, we reported that the hibernation-promoting factor (HPF) ofListeria monocytogenesis required for 100S particle formation and facilitates adaptation to a number of stresses. Here, we demonstrate that HPF is required for the high tolerance of stationary-phase cultures to aminoglycosides but not to beta-lactam or quinolone antibiotics. The sensitivity of a Δhpfmutant to gentamicin was suppressed by the bacteriostatic antibiotics chloramphenicol and rifampin, which inhibit translation and transcription, respectively. Disruption of the proton motive force by the ionophore carbonyl cyanidem-chlorophenylhydrazone or mutation of genes involved in respiration also suppressed the sensitivity of the Δhpfmutant. Accordingly, Δhpfmutants had aberrantly high levels of ATP and reducing equivalents during prolonged stationary phase. Analysis of bacterial uptake of fluorescently labeled gentamicin demonstrated that the Δhpfmutant harbored increased intracellular levels of the drug. Finally, deletion of the main ribosome hibernation factor ofEscherichia coli, ribosome modulation factor (rmf), rendered these bacteria susceptible to gentamicin. Taken together, these data suggest that HPF-mediated ribosome hibernation results in repression of the metabolic activity that underlies aminoglycoside tolerance. HPF is conserved in nearly every bacterial pathogen, and the role of ribosome hibernation in antibiotic tolerance may have clinical implications.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献