Quantitative assay for transformation of 3T3 cells by herpes simplex virus type 2

Author:

Duff R,Rapp F

Abstract

The interaction of herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) with Swiss/3T3 cells was investigated. Virus-induced cytopathic effects developed in the absence of production of infectious virus. HSV-2 inactivated with UV light (2, 4, 6, and 8 min) also induced cell death in the absence of virus replication. Cell death was not detectable after infection by HSV-2 that had been inactivated by UV irradiation for 10, 12, and 14 min. 3T3 cells infected with UV-inactivated virus (10 and 12 min) continued to replicate past the contact-inhibited monolayer normally associated with these cells. Infection of 3T3 cells with UV-irradiated USV-2 also induced the development of transformed foci. Transformed cells with an epithelioid of fibroblastoid morphology were identified and isolated. All HSV-2-transformed cell lines contained HSV-2-specific antigens detectable by immunofluorescence techniques. The maximum frequency of HSV-2-induced transformation was 3 times 105 PFU per transformed focus, and the observed transformation could be inhibited by pretreatment of the virus with specific antiserum. No type C particles were detected within five cell culture passages after transformation by HSV-2. Type C virus particles were detected after 10 cell culture passages of the HSV-2-transformed cell lines.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference18 articles.

1. Antigenic properties of endogenous type-C viruses from spontaneously transformed clones of BALB/3T3;Aoki T.;Proc. Nat. Acad. Sci. U.S.A.,1973

2. Darai G. and K. Munk. 1973. Human embryonic Iung cells abortively infected with herpes virus hominis type J. VM¢OL.

3. show some properties of cell transformation. Nature

4. (London) New Biol. 241:268-269.

5. Properties of hamster embryo fibroblasts transformed in vitro after exposure to ultraviolet-irradiated herpes simplex virus type 2;Duff R.;J. Virol.,1971

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3