Thermal Inactivation of Type E Botulinum Toxin

Author:

Licciardello Joseph J.1,Nickerson John T. R.1,Ribich Crystal A.1,Goldblith Samuel A.1

Affiliation:

1. Department of Nutrition and Food Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract

The theoretical required cooking times for inactivation of type E Clostridium botulinum toxin (5,000 ld 50 mouse units per 0.5 ml) in haddock fillets of various sizes were calculated by graphical integration of the toxin inactivation rate and heat penetration data. The results indicated that normal cooking procedures should suffice to inactivate this amount of toxin. This conclusion was substantiated by the following additional experimental observations which revealed that the original experiments had been conducted under conservative conditions. First, maximal heat stability of the toxin was found to occur at about p H 5.5, with decreasing resistance upon increasing p H. The theoretical cooking times were based on destruction of the toxin at p H 6.7. The p H of radio-pasteurized inoculated haddock, when toxin production had occurred, was on the alkaline side, at which condition the toxin is heat-labile. Second, when spoilage was discernible in radio-pasteurized inoculated haddock, the toxin titer was low, about 50 ld 50 mouse units per 0.5 ml. Third, the toxin was adequately inactivated in toxic fillets after deep-fat frying for 3 min at 375 F (190.6 C) or after pan frying for 5 min per side at 400 F (204.4 C). Fourth, in this study, residual toxin activity was assayed by intraperitoneal injection of mice. It was shown that the oral toxic dose was 50 to 100 times greater than the intraperitoneal toxic dose.

Publisher

American Society for Microbiology

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3