Comparison of the Luminex Respiratory Virus Panel Fast Assay with In-House Real-Time PCR for Respiratory Viral Infection Diagnosis

Author:

Gadsby Naomi J.1,Hardie Alison1,Claas Eric C. J.2,Templeton Kate E.1

Affiliation:

1. Specialist Virology Centre, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom

2. Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands

Abstract

ABSTRACT The Luminex xTAG Respiratory Virus Panel (RVP) assay has been shown to offer improved diagnostic sensitivity over traditional viral culture methods and to have a sensitivity comparable to those of individual real-time nucleic acid tests for respiratory viruses. The objective of this retrospective study was to test a new, streamlined version of this assay, the RVP Fast assay, which requires considerably less run time and operator involvement. The study compared the performance of the RVP Fast assay with those of viral culture, a direct fluorescent assay (DFA), and a panel of single and multiplex real-time PCRs in the testing of 286 respiratory specimens submitted to the Edinburgh Specialist Virology Centre for routine diagnosis of viral infection between December 2007 and February 2009. At least one respiratory viral infection was detected in 13.6% of specimens by culture and DFA combined, in 49.7% by real-time PCR, and in 46.2% by the RVP Fast assay. The sensitivity and specificity of the RVP Fast assay compared to the results of real-time PCR as the gold standard were 78.8% and 99.6%, respectively. Real-time PCR-positive specimens missed by the RVP Fast assay generally had low viral loads or were positive for adenovirus. Additionally, a small number of specimens were positive by the RVP Fast assay but were not detected by real-time PCR. For some viral targets, only a small number of positive results were found in our sample set using either method; therefore, the sensitivity of detection of the RVP Fast assay for individual targets could be investigated further with a greater number of virus-positive specimens.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3