Affiliation:
1. Department of Biotechnology, University of New South Wales, P.O. Box 1, Kensington, New South Wales 2033, Australia
Abstract
Microbial manganese oxidation was demonstrated at high Mn
2+
concentrations (5 g/liter) in bacterial cultures in the presence of a microalga. The structure of the oxide produced varied depending on the bacterial strain and mode of culture. A nonaxenic, acid-tolerant microalga, a
Chlamydomonas
sp., was found to mediate formation of manganite (γ-MnOOH). Bacteria isolated from associations with crude cultures of this alga grown in aerated bioreactors formed disordered γ-MnO
2
from Mn
2+
at concentrations of 5 g/liter over 1 month, yielding 3.3 g of a semipure oxide per liter. All algal-bacterial cultures removed Mn
2+
from solution, but only those with the highest removal rates formed an insoluble oxide. While the alga was an essential component of the reaction, a
Pseudomonas
sp. was found to be primarily responsible for the formation of a manganese precipitate. Medium components—algal biomass and urea—showed optima at 5.7 and 10 g/liters, respectively. The scaled-up culture (50 times) gave a yield of 22.3 g (53 mg/liter/day from a 15-liter culture) of semipure disordered γ-MnO
2
, identified by X-ray diffraction and Fourier transform infrared (FTIR) spectroscopy, and had a manganese oxide O/Mn ratio of 1.92. The Mn(IV) content in the oxide was low (30.5%) compared with that of mined or chemically formed γ-MnO
2
(ca. 50%). The shortfall in the bacterial oxide manganese content was due to biological and inorganic contaminants. FTIR spectroscopy, transmission electron microscopy, and electron diffraction studies have identified manganite as a likely intermediate product in the formation of disordered γ-MnO
2
.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献