Anaphase-Promoting Complex/Cyclosome Participates in the Acute Response to Protein-Damaging Stress

Author:

Ahlskog Johanna K.12,Björk Johanna K.12,Elsing Alexandra N.12,Aspelin Camilla3,Kallio Marko24,Roos-Mattjus Pia3,Sistonen Lea12

Affiliation:

1. Department of Biosciences, Biology, Åbo Akademi University, 20520 Turku, Finland

2. Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, 20520 Turku, Finland

3. Department of Biosciences, Biochemistry, Åbo Akademi University, 20520 Turku, Finland

4. Medical Biotechnology, VTT Technical Research Centre of Finland, 20520 Turku, Finland

Abstract

ABSTRACT The ubiquitin E3 ligase anaphase-promoting complex/cyclosome (APC/C) drives degradation of cell cycle regulators in cycling cells by associating with the coactivators Cdc20 and Cdh1. Although a plethora of APC/C substrates have been identified, only a few transcriptional regulators are described as direct targets of APC/C-dependent ubiquitination. Here we show that APC/C, through substrate recognition by both Cdc20 and Cdh1, mediates ubiquitination and degradation of heat shock factor 2 (HSF2), a transcription factor that binds to the Hsp70 promoter. The interaction between HSF2 and the APC/C subunit Cdc27 and coactivator Cdc20 is enhanced by moderate heat stress, and the degradation of HSF2 is induced during the acute phase of the heat shock response, leading to clearance of HSF2 from the Hsp70 promoter. Remarkably, Cdc20 and the proteasome 20S core α2 subunit are recruited to the Hsp70 promoter in a heat shock-inducible manner. Moreover, the heat shock-induced expression of Hsp70 is increased when Cdc20 is silenced by a specific small interfering RNA (siRNA). Our results provide the first evidence for participation of APC/C in the acute response to protein-damaging stress.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3