Constitutive NF-kappa B activity in neurons.

Author:

Kaltschmidt C,Kaltschmidt B,Neumann H,Wekerle H,Baeuerle P A

Abstract

NF-kappa B is inducible transcription factor present in many cell types in a latent cytoplasmic form. So far, only immune cells including mature B cells, thymocytes, and adherent macrophages have been reported to contain constitutively active forms of NF-kappa B in the nucleus. A recent study showed that the human immunodeficiency virus type 1 (HIV-1) promoter is highly active in several brain regions of transgenic mice (J. R. Corboy, J. M. Buzy, M. C. Zink, and J. E. Clements, Science 258:1804-1807, 1992). Since the activity of this viral enhancer is governed mainly by two binding sites for NF-kappa B, we were prompted to investigate the state of NF-kappa B activity in neurons. Primary neuronal cultures derived from rat hippocampus and cerebral cortex showed a high constitutive expression of an HIV-1 long terminal repeat-driven luciferase reporter gene, which was primarily dependent on intact NF-kappa B binding sites and was abolished upon coexpression of the NF-kappa B-specific inhibitor I kappa B-alpha. Indirect immunofluorescence and confocal laser microscopy showed that the activity of NF-kappa B correlated with the presence of the NF-kappa B subunits p50 and RelA (p65) in nuclei of cultured neurons. NF-kappa B was also constitutively active in neurons in vivo. As investigated by electrophoretic mobility shift assays, constitutive NF-kappa B DNA-binding activity was highly enriched in fractions containing neuronal nuclei prepared from rat cerebral cortex. Nuclear NF-kappa B-specific immunostaining was also seen in cryosections from mouse cerebral cortex and hippocampus. Only a subset of neurons was stained. Activated NF-kappa B in the brain is likely to participate in normal brain function and to reflect a distinct state of neuronal activity or differentiation. Furthermore, it may explain the high level of activity of the HIV-1 enhancer in neurons, an observation potentially relevant for the etiology of the AIDS dementia complex caused by HIV infection of the central nervous system.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3