Identification of potential target genes for Adr1p through characterization of essential nucleotides in UAS1.

Author:

Cheng C,Kacherovsky N,Dombek K M,Camier S,Thukral S K,Rhim E,Young E T

Abstract

Adr1p is a regulatory protein in the yeast Saccharomyces cerevisiae that binds to and activates transcription from two sites in a perfect 22-bp inverted repeat, UAS1, in the ADH2 promoter. Binding requires two C2H2 zinc fingers and a region amino terminal to the fingers. The importance for DNA binding of each position within UAS1 was deduced from two types of assays. Both methods led to an identical consensus sequence containing only four essential base pairs: GG(A/G)G. The preferred sequence, TTGG(A/G)GA, is found in both halves of the inverted repeat. The region of Adr1p amino terminal to the fingers is important for phosphate contacts in the central region of UAS1. However, no base-specific contacts in this portion of UAS1 are important for DNA binding or for ADR1-dependent transcription in vivo. When the central 6 bp were deleted, only a single monomer of Adr1p was able to bind in vitro and activation in vivo was severely reduced. On the basis of these results and previous knowledge about the DNA binding site requirements, including constraints on the spacing and orientation of sites that affect activation in vivo, a consensus binding site for Adr1p was derived. By using this consensus site, potential Adr1p binding sites were located in the promoters of genes known to show ADR1-dependent expression. In addition, this consensus allowed the identification of new potential target genes for Adr1p.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3