TATA-dependent enhancer stimulation of promoter activity in mice is developmentally acquired.

Author:

Majumder S,DePamphilis M L

Abstract

Herpes simplex virus (HSV) thymidine kinase (tk) promoter activity depends on four transcription factor binding sites, one of which is a TATA box sequence, and the presence of either a cis-acting enhancer sequence or a transactivator protein. Studies presented here show that this TATA box was required for promoter activity only after cells began to differentiate and then only when promoter activity was stimulated by either an enhancer or a transactivator. When the HSV tk promoter was utilized by mouse embryos from the one-cell to eight-cell stage of development or by undifferentiated mouse embryonic stem cells, disruption of the HSV tk TATA box by site-specific mutations did not reduce promoter activity. This was true even when HSV tk promoter activity was stimulated strongly by either the embryo-responsive polyomavirus F101 enhancer or its natural transactivator, the HSV ICP4 gene product. However, stimulated expression was dependent on a distal Sp1 DNA binding site. Similarly, disruption of the TATA box did not reduce tk promoter activity in primary mouse embryonic fibroblasts or in immortalized 3T3 mouse fibroblasts; in fact, promoter activity was increased up to 2.6-fold. However, in these differentiated cells, stimulation of the HSV tk promoter by either the F101 enhancer or ICP4 protein required the TATA box. HSV tk promoter activity also was dependent on its TATA box in the mouse oocyte, a terminally differentiated cell with an endogenous transactivating activity. These results reveal that the need for a TATA box is developmentally acquired and depends on at least two parameters: the differentiated state of the cell and stimulation of the promoter by either an enhancer or a transactivator.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3