Equivalent mutations in the two repeats of yeast TATA-binding protein confer distinct TATA recognition specificities.

Author:

Arndt K M,Wobbe C R,Ricupero-Hovasse S,Struhl K,Winston F

Abstract

To investigate the process of TATA box recognition by the TATA box-binding protein (TBP), we have performed a detailed genetic and biochemical analysis of two Saccharomyces cerevisiae TBP mutants with altered DNA-binding specificity. The mutant proteins have amino acid substitutions (Leu-205 to Phe and Leu-114 to Phe) at equivalent positions within the two repeats of TBP that are involved in TATA element binding. In an in vivo assay that employs a nearly complete set of single point mutations of the consensus TATAAA sequence, one of the TBP mutants (TBP-L114F) recognizes the sequence TATAAG, while the other TBP mutant (TBP-L205F) recognizes one substitution at the first position of the TATA element, CATAAA, and three substitutions at the 3' end of the TATA box. Specificity patterns determined from in vitro transcription experiments with purified recombinant wild-type TBP and TBP-L205F agree closely with those observed in vivo, indicating that altered TATA utilization in the mutant strains is a direct consequence of altered TATA recognition by the mutant TBPs. The distinct TATA recognition patterns exhibited by TBP-L114F and TBP-L205F strongly suggest that in vivo, TBP binds to the TATA element in a specific orientation. The orientation predicted from these studies is further supported by the identification of intragenic suppressors that correct the defect of TBP-L205F. This orientation is consistent with that observed in vitro by crystallographic analyses of TBP-TATA box complexes. Finally, the importance of altered DNA-binding specificity in transcriptional regulation at the S. cerevisiae his4-912 delta promoter was addressed for TBP-L205F. A mutational analysis of this promoter region demonstrates that the nonconsensus TATA element CATAAA is required for a transcriptional effect of TBP-L205F in vivo. This finding suggests that the interaction of TBP with nonconsensus TATA elements may play an important regulatory role in transcription initiation.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3