Author:
Firshein W,Strumph P,Benjamin P,Burnstein K,Kornacki J
Abstract
A DNA-membrane complex was extracted from minicells of an Escherichia coli mutant harboring a "miniplasmid" derivative (11.2 kilobases) of the low-copynumber plasmid RK2 (56 kilobases). The complex contained various species of supercoiled and intermediate forms of plasmid DNA, of which approximately 20% was bound firmly to the membrane after centrifugation in a CsCl density gradient. The plasmid DNA-membrane complex synthesized new plasmid DNA without the addition of exogenous template, enzymes, or other proteins. DNA synthesis appeared to proceed semi-conservatively, was dependent on the four deoxynucleoside triphosphates, partially dependent on ribonucleoside triphosphates, and was sensitive to rifampin, an antibiotic known to inhibit initiation of replication. Novobiocin and nalidixic acid also inhibited synthesis, as did the omission of ATP, N-Ethylmaleimide, an inhibitor of DNA polymerase II and III activity, but not DNA polymerase I activity, also partially inhibited the synthetic reaction, as did chloramphenicol. The plasmid DNA synthetic product was analyzed by alkaline sucrose and dye-CsCl gradient centrifugation, as well as by agarose gel electrophoresis. In each case, the product consisted of parental and intermediate forms of plasmid DNA. Some chromosomal DNA was also synthesized by a contaminating bacterial DNA-membrane complex, but this synthesis was rifampin insensitive and could be separated from plasmid DNA synthesis.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献