Author:
Morzycka-Wroblewska E,Selker E U,Stevens J N,Metzenberg R L
Abstract
About 100 genes coding for 5S RNA in Neurospora crassa are dispersed throughout the genome (Selker et al., Cell 24:815-818, 1981; R. L. Metzenberg, J. N. Stevens, E. U. Selker, and E. Morzycka-Wroblewska, manuscript in preparation). The majority of them correspond to the most abundant species (alpha) of 5S RNA found in the cell. Gene conversion, gene transposition, or both may be responsible for the maintenance of sequence homogeneity (concerted evolution) of alpha-type 5S genes. To explore these possibilities, we isolated and characterized separate 5S regions from two distantly related laboratory strains of N. crassa. Restriction and sequence analyses revealed no differences in molecular location of allelic 5S genes between the two strains. However, the DNA sequences around the 5S genes are ca. 10% divergent. We concluded that transposition is not frequent enough to account for the concerted evolution of N. crassa alpha-5S genes. In contrast to sequence divergence in the flanking regions between the two strains, the 5S transcribed regions are identical (with one exception), suggesting that these genes are being corrected. We have found that flanking sequences of various N. crassa 5S genes within each strain are largely different. Thus, if the correction mechanism is based on gene conversion, it is limited to the transcribed regions of the genes. However, we did find a short region of consensus including the sequence TATA located 25 to 30 nucleotides preceding the position of transcription initiation. This region may be involved in the transcription of N. crassa 5S genes.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献