Indirect Pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in Polymicrobial Otitis Media Occurs via Interspecies Quorum Signaling

Author:

Armbruster Chelsie E.1,Hong Wenzhou1,Pang Bing1,Weimer Kristin E. D.1,Juneau Richard A.1,Turner James1,Swords W. Edward1

Affiliation:

1. Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA

Abstract

ABSTRACT Otitis media (OM) is among the leading diseases of childhood and is caused by opportunists that reside within the nasopharynx, such as Haemophilus influenzae and Moraxella catarrhalis . As with most airway infections, it is now clear that OM infections involve multiple organisms. This study addresses the hypothesis that polymicrobial infection alters the course, severity, and/or treatability of OM disease. The results clearly show that coinfection with H.   influenzae and M. catarrhalis promotes the increased resistance of biofilms to antibiotics and host clearance. Using H. influenzae mutants with known biofilm defects, these phenotypes were shown to relate to biofilm maturation and autoinducer-2 (AI-2) quorum signaling. In support of the latter mechanism, chemically synthesized AI-2 (dihydroxypentanedione [DPD]) promoted increased M. catarrhalis biofilm formation and resistance to antibiotics. In the chinchilla infection model of OM, polymicrobial infection promoted M. catarrhalis persistence beyond the levels seen in animals infected with M. catarrhalis alone. Notably, no such enhancement of M. catarrhalis persistence was observed in animals infected with M.   catarrhalis and a quorum signaling-deficient H. influenzae luxS mutant strain. We thus conclude that H. influenzae promotes M. catarrhalis persistence within polymicrobial biofilms via interspecies quorum signaling. AI-2 may therefore represent an ideal target for disruption of chronic polymicrobial infections. Moreover, these results strongly imply that successful vaccination against the unencapsulated H. influenzae strains that cause airway infections may also significantly impact chronic M. catarrhalis disease by removing a reservoir of the AI-2 signal that promotes M. catarrhalis persistence within biofilm. IMPORTANCE Otitis media (OM) is one of the most common childhood infections and is a leading reason for antibiotic prescriptions to children. Chronic and recurrent OM involves persistence of bacteria within biofilm communities, a state in which they are highly resistant to immune clearance and antibiotic treatment. While it is clear that most of these infections involve multiple species, the vast majority of knowledge about OM infections has been derived from work involving single bacterial species. There is a pressing need for better understanding of the impact of polymicrobial infection on the course, severity, and treatability of OM disease. In this study, we show that communication between bacterial species promotes bacterial persistence and resistance to antibiotics, which are important considerations in the diagnosis, prevention, and treatment of OM. Moreover, the results of this study indicate that successful preventive measures against H. influenzae could reduce the levels of disease caused by M. catarrhalis .

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 184 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3