Recombinase-Mediated Cassette Exchange as a Novel Method To Study Somatic Hypermutation in Ramos Cells

Author:

Baughn Linda B.1,Kalis Susan L.1,MacCarthy Thomas2,Wei Lirong1,Fan Manxia1,Bergman Aviv2,Scharff Matthew D.1

Affiliation:

1. Departments of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA

2. Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, USA

Abstract

ABSTRACT Activation-induced cytidine deaminase (AID) mediates the somatic hypermutation (SHM) of immunoglobulin (Ig) variable (V) regions that is required for the generation of antibody diversity and for the affinity maturation of the antibody response against infectious agents and toxic substances. AID preferentially targets WRC (W = A/T, R = A/G) hot spot motifs, particularly WGCW motifs that create overlapping hot spots on both strands. In order to gain a better understanding of the generation of antibody diversity and to create a platform for the in vitro generation of affinity-matured antibodies, we have established a system involving recombinase-mediated cassette exchange (RMCE) to replace the V region and its flanking sequences. This makes it possible to easily manipulate the sequence of the Ig gene within the endogenous heavy chain of the Ramos human Burkitt’s lymphoma cell line. Here we show that the newly integrated wild-type (WT) VH regions introduced by RMCE undergo SHM similarly to non-RMCE-modified Ramos cells. Most importantly, we have shown that introducing a cluster of WGCW motifs into the complementary determining region 2 (CDR2) of the human heavy chain V region significantly raised the mutation frequency and number of mutations per sequence compared to WT controls. Thus, we have demonstrated a novel platform in Ramos cells whereby we can easily and quickly manipulate the endogenous human VH region to further explore the regulation and targeting of SHM. This platform will be useful for generating human antibodies with changes in affinity and specificity in vitro . IMPORTANCE An effective immune response requires a highly diverse repertoire of affinity-matured antibodies. Activation-induced cytidine deaminase (AID) is required for somatic hypermutation (SHM) of immunoglobulin (Ig) genes. Although a great deal has been learned about the regulation of AID, it remains unclear how it is preferentially targeted to particular motifs, to certain locations within the Ig gene and not to other highly expressed genes in the germinal center B cell. This is an important question because AID is highly mutagenic and is sometimes mistargeted to other highly expressed genes, including proto-oncogenes, leading to B cell lymphomas. Here we describe how we utilize recombinase-mediated cassette exchange (RMCE) to modify the sequence of the endogenous heavy chain locus in the Ramos Burkitt’s lymphoma cell line. This platform can be used to explore the regulation and targeting of SHM and to generate human antibodies with changes in affinity and specificity in vitro .

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3