Parallel Evolution in Pseudomonas aeruginosa over 39,000 Generations In Vivo

Author:

Huse Holly K.12,Kwon Taejoon2,Zlosnik James E. A.3,Speert David P.3,Marcotte Edward M.24,Whiteley Marvin12

Affiliation:

1. Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas, USA;

2. Institute for Cellular and Molecular Biology and Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas, USA;

3. Division of Infectious and Immunological Diseases, Department of Pediatrics, and Centre for Understanding and Preventing Infection in Children, University of British Columbia, Vancouver, British Columbia, Canada; and

4. Department of Chemistry and Biochemistry, University of Texas, Austin, Texas, USA

Abstract

ABSTRACT The Gram-negative bacterium Pseudomonas aeruginosa is a common cause of chronic airway infections in individuals with the heritable disease cystic fibrosis (CF). After prolonged colonization of the CF lung, P. aeruginosa becomes highly resistant to host clearance and antibiotic treatment; therefore, understanding how this bacterium evolves during chronic infection is important for identifying beneficial adaptations that could be targeted therapeutically. To identify potential adaptive traits of P. aeruginosa during chronic infection, we carried out global transcriptomic profiling of chronological clonal isolates obtained from 3 individuals with CF. Isolates were collected sequentially over periods ranging from 3 months to 8 years, representing up to 39,000 in vivo generations. We identified 24 genes that were commonly regulated by all 3 P. aeruginosa lineages, including several genes encoding traits previously shown to be important for in vivo growth. Our results reveal that parallel evolution occurs in the CF lung and that at least a proportion of the traits identified are beneficial for P. aeruginosa chronic colonization of the CF lung. IMPORTANCE Deadly diseases like AIDS, malaria, and tuberculosis are the result of long-term chronic infections. Pathogens that cause chronic infections adapt to the host environment, avoiding the immune response and resisting antimicrobial agents. Studies of pathogen adaptation are therefore important for understanding how the efficacy of current therapeutics may change upon prolonged infection. One notorious chronic pathogen is Pseudomonas aeruginosa , a bacterium that causes long-term infections in individuals with the heritable disease cystic fibrosis (CF). We used gene expression profiles to identify 24 genes that commonly changed expression over time in 3 P. aeruginosa lineages, indicating that these changes occur in parallel in the lungs of individuals with CF. Several of these genes have previously been shown to encode traits critical for in vivo -relevant processes, suggesting that they are likely beneficial adaptations important for chronic colonization of the CF lung.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3