Candida albicans Zinc Cluster Protein Upc2p Confers Resistance to Antifungal Drugs and Is an Activator of Ergosterol Biosynthetic Genes

Author:

MacPherson Sarah1,Akache Bassel2,Weber Sandra3,De Deken Xavier3,Raymond Martine3,Turcotte Bernard241

Affiliation:

1. Microbiology and Immunology, Room H7.83, Royal Victoria Hospital, McGill University, 687 Pine Ave. West, Montréal, Québec, Canada H3A 1A1

2. Dept. of Medicine

3. Institut de Recherches Cliniques de Montréal, 110 Pine Ave. West, Montréal, Québec, Canada H2W 1R7

4. Biochemistry

Abstract

ABSTRACT The human pathogen Candida albicans is responsible for a large proportion of infections in immunocompromised individuals, and the emergence of drug-resistant strains is of medical concern. Resistance to antifungal azole compounds is often due to an increase in drug efflux or an alteration of the pathway for synthesis of ergosterol, an important plasma membrane component in fungi. However, little is known about the transcription factors that mediate drug resistance. In Saccharomyces cerevisiae , two highly related transcriptional activators, Upc2p and Ecm22p, positively regulate the expression of genes involved in ergosterol synthesis ( ERG genes). We have identified a homologue in C. albicans of the S. cerevisiae UPC2 / ECM22 genes and named it UPC2 . Deletion of this gene impaired growth under anaerobic conditions and rendered cells highly susceptible to the antifungal drugs ketoconazole and fluconazole. Conversely, overexpression of Upc2p increased resistance to ketoconazole, fluconazole, and fluphenazine. Azole-induced expression of the ERG genes was abolished in a Δ upc2 strain, while basal levels of these mRNAs remained unchanged. Importantly, the purified DNA binding domain of Upc2p bound in vitro to putative sterol response elements in the ERG2 promoter, suggesting that Upc2p increases the expression of the ERG genes by directly binding to their promoters. These results provide an important link between changes in the ergosterol biosynthetic pathway and azole resistance in this opportunistic fungal species.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3