Genome-Wide siRNA Screen Identifies Complementary Signaling Pathways Involved in Listeria Infection and Reveals Different Actin Nucleation Mechanisms during Listeria Cell Invasion and Actin Comet Tail Formation

Author:

Kühbacher Andreas123,Emmenlauer Mario4,Rämo Pauli4,Kafai Natasha5,Dehio Christoph4,Cossart Pascale123,Pizarro-Cerdá Javier123

Affiliation:

1. Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France

2. INSERM, U604, Paris, France

3. INRA, USC2020, Paris, France

4. Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland

5. Department of Molecular and Cell Biology, University of California, Berkeley, California, USA

Abstract

ABSTRACT Listeria monocytogenes enters nonphagocytic cells by a receptor-mediated mechanism that is dependent on a clathrin-based molecular machinery and actin rearrangements. Bacterial intra- and intercellular movements are also actin dependent and rely on the actin nucleating Arp2/3 complex, which is activated by host-derived nucleation-promoting factors downstream of the cell receptor Met during entry and by the bacterial nucleation-promoting factor ActA during comet tail formation. By genome-wide small interfering RNA (siRNA) screening for host factors involved in bacterial infection, we identified diverse cellular signaling networks and protein complexes that support or limit these processes. In addition, we could precise previously described molecular pathways involved in Listeria invasion. In particular our results show that the requirements for actin nucleators during Listeria entry and actin comet tail formation are different. Knockdown of several actin nucleators, including SPIRE2, reduced bacterial invasion while not affecting the generation of comet tails. Most interestingly, we observed that in contrast to our expectations, not all of the seven subunits of the Arp2/3 complex are required for Listeria entry into cells or actin tail formation and that the subunit requirements for each of these processes differ, highlighting a previously unsuspected versatility in Arp2/3 complex composition and function. IMPORTANCE Listeria is a bacterial pathogen that induces its internalization within the cytoplasm of human cells and has been used for decades as a major molecular tool to manipulate cells in order to explore and discover cellular functions. We have inactivated individually, for the first time in epithelial cells, all the genes of the human genome to investigate whether each gene modifies positively or negatively the Listeria infectious process. We identified novel signaling cascades that have never been associated with Listeria infection. We have also revisited the role of the molecular complex Arp2/3 involved in the polymerization of the actin cytoskeleton, which was shown previously to be required for Listeria entry and movement inside host cells, and we demonstrate that contrary to the general dogma, some subunits of the complex are dispensable for both Listeria entry and bacterial movement.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3