Percolation of the Phd Repressor-Operator Interface

Author:

Zhao Xueyan1,Magnuson Roy David1

Affiliation:

1. Department of Biological Sciences, University of Alabama, Huntsville, Alabama

Abstract

ABSTRACT Transcription of the P1 plasmid addiction operon, a prototypical toxin-antitoxin system, is negatively autoregulated by the products of the operon. The Phd repressor-antitoxin protein binds to 8-bp palindromic Phd-binding sites in the promoter region and thereby represses transcription. The toxin, Doc, mediates cooperative interactions between adjacent Phd-binding sites and thereby enhances repression. Here, we describe a homologous operon from Salmonella enterica serovar Typhimurium which has the same pattern of regulation but an altered repressor-operator specificity. This difference in specificity maps to the seventh amino acid of the repressor and to the symmetric first and eighth positions of the corresponding palindromic repressor-binding sites. Thus, the repressor-operator interface has coevolved so as to retain the interaction while altering the specificity. Within an alignment of homologous repressors, the seventh amino acid of the repressor is highly variable, indicating that evolutionary changes in repressor specificity may be common in this protein family. We suggest that the robust properties of the negative feedback loop, the fuzzy recognition in the operator-repressor interface, and the duplication and divergence of the repressor-binding sites have facilitated the speciation of this repressor-operator interface. These three features may allow the repressor-operator system to percolate within a nearly neutral network of single-step mutations without the necessity of invoking simultaneous mutations, low-fitness intermediates, or other improbable or rate-limiting mechanisms.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3