Genes Required for Intrinsic Multidrug Resistance in Mycobacterium avium

Author:

Philalay Julie S.1,Palermo Christine O.1,Hauge Kirsten A.1,Rustad Tige R.1,Cangelosi Gerard A.1

Affiliation:

1. Seattle Biomedical Research Institute, Seattle, Washington

Abstract

ABSTRACT Genes required for intrinsic multidrug resistance by Mycobacterium avium were identified by screening a library of transposon insertion mutants for the inability to grow in the presence of ciprofloxacin, clarithromycin, and penicillin at subinhibitory concentrations. Two genes, pks12 and Maa2520, were disrupted in multiple drug-susceptible mutants. The pks12 gene (Maa1979), which may be cotranscribed with a downstream gene (Maa1980), is widely conserved in the actinomycetes. Its ortholog in Mycobacterium tuberculosis is a polyketide synthase required for the synthesis of dimycocerosyl phthiocerol, a major cell wall lipid. Mutants of M. avium with insertions into pks12 exhibited altered colony morphology and were drug susceptible, but they grew as well as the wild type did in vitro and intracellularly within THP-1 cells. A pks12 mutant of M. tuberculosis was moderately more susceptible to clarithromycin than was its parent strain; however, susceptibility to ciprofloxacin and penicillin was not altered. M. avium complex (MAC) and M. tuberculosis appear to have different genetic mechanisms for resisting the effects of these antibiotics, with pks12 playing a relatively more significant role in MAC. The second genetic locus identified in this study, Maa2520, is a conserved hypothetical gene with orthologs in M. tuberculosis and Mycobacterium leprae . It is immediately upstream of Maa2521, which may code for an exported protein. Mutants with insertions at this locus were susceptible to multiple antibiotics and slow growing in vitro and were unable to survive intracellularly within THP-1 cells. Like pks12 mutants, they exhibited increased Congo red binding, an indirect indication of cell wall modifications. Maa2520 and pks12 are the first genes to be linked by mutation to intrinsic drug resistance in MAC.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3