Characterization of a beta-actin mRNA zipcode-binding protein

Author:

Ross A F1,Oleynikov Y1,Kislauskis E H1,Taneja K L1,Singer R H1

Affiliation:

1. Department of Cell Biology, University of Massachusetts Medical School, Worcester 01655, USA.

Abstract

Localization of beta-actin mRNA to the leading edge of fibroblasts requires the presence of conserved elements in the 3' untranslated region of the mRNA, including a 54-nucleotide element which has been termed the "zipcode" (E. Kislauskis, X. Zhu, and R. H. Singer, J. Cell Biol. 127:441-451, 1994). In order to identify proteins which bind to the zipcode and possibly play a role in localization, we performed band-shift mobility assays, UV cross-linking, and affinity purification experiments. A protein of 68 kDa was identified which binds to the proximal (to the coding region) half of the zipcode with high specificity (ZBP-1). Microsequencing provided unique peptide sequences of approximately 15 residues each. Degenerate primers corresponding to the codons derived from the peptides were synthesized and used for PCR amplification. Screening of a chicken cDNA library resulted in isolation of several clones providing a DNA sequence encoding a 67.7-kDa protein with regions homologous to several RNA-binding proteins, such as hnRNP E1 and E2, and with consensus mRNA recognition motif with RNP1 and 2 motifs and a putative REV-like nuclear export signal. Antipeptide antibodies were raised in rabbits which bound to ZBP-1 and coimmunoprecipitated proteins of 120 and 25 kDa. The 120-kDa protein was also obtained by affinity purification with the RNA zipcode sequence, along with a 53-kDa protein, but the 25-kDa protein appeared only in immunoprecipitations. Mutation of one of the conserved sequences within the zipcode, an ACACCC element in its proximal half, greatly reduced its protein binding and localization properties. These data suggest that the 68-kDa ZBP-1 we have isolated and cloned is an RNA-binding protein that functions within a complex to localize beta-actin mRNA.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3