The human cytomegalovirus 2.7-kilobase RNA promoter contains a functional binding site for the adenovirus major late transcription factor

Author:

Klucher K M1,Spector D H1

Affiliation:

1. Department of Biology, University of California, San Diego, La Jolla 92093.

Abstract

We have examined the factors which influence the expression of a major 2.7-kilobase (kb) early transcript encoded by the long repeat of the human cytomegalovirus (HCMV) strain AD169 genome. Previously, by deletion analysis, we determined that the promoter for this early RNA consisted of multiple cis-acting elements (Klucher et al., J. Virol. 63:5334-5343, 1989). Using extracts prepared from HeLa cells as well as from infected and uninfected foreskin fibroblasts, we also obtained evidence for the interaction of a cellular factor with one of these elements. In this study, we have further defined the specificity and functional importance of this binding. On the basis of DNase I footprinting and methylation interference assays, we localized the site of interaction to a region (nucleotides -113 to -106 relative to the mRNA start site) which contains homology to the binding site for the adenovirus major late transcription factor (MLTF), also referred to as the upstream stimulatory factor (USF). The contact points of binding between the cellular factor and the guanine residues within this segment were consistent with the pattern of binding for USF/MLTF. Additionally, by using oligonucleotides containing the binding sites for USF/MLTF from the adenovirus major late promoter and the HCMV 2.7-kb RNA promoter as competitors in gel retardation assays, we were able to show that USF/MLTF bound to the two promoters with similar affinity. Correlation of the binding activity with in vivo functional importance was provided by mutagenesis and transient-expression assays. A point mutation within the HCMV USF/MLTF site lowered the affinity of binding 5- to 10-fold and decreased the inducible activity of the HCMV 2.7-kb RNA promoter by approximately 50%. Furthermore, the addition of the HCMV USF/MLTF site to a minimal 2.7-kb RNA promoter containing only the TATA sequence resulted in an increase in HCMV inducible transcriptional activity of 6- to 20-fold. However, the HCMV USF/MLTF site could not functionally substitute for the TATA sequence. These studies further support the idea that for maximal response to the HCMV infection, the 2.7-kb RNA promoter requires multiple cis-acting sequences, two of which include the binding sites for USF/MLTF and TFIID.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3