Persistence of Helicobacter pylori in Heterotrophic Drinking-Water Biofilms

Author:

Gião M. S.12,Azevedo N. F.12,Wilks S. A.2,Vieira M. J.1,Keevil C. W.2

Affiliation:

1. Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal

2. School of Biological Sciences, Biomedical Sciences Building, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, United Kingdom

Abstract

ABSTRACT Although the route of transmission of Helicobacter pylori remains unknown, drinking water has been considered a possible transmission vector. It has been shown previously that, in water, biofilms are a protective niche for several pathogens, protecting them from stressful conditions, such as low carbon concentration, shear stress, and less-than-optimal temperatures. In this work, the influence of these three parameters on the persistence and cultivability of H. pylori in drinking-water biofilms was studied. Autochthonous biofilm consortia were formed in a two-stage chemostat system and then inoculated with the pathogen. Total numbers of H. pylori cells were determined by microscopy using a specific H. pylori 16S rRNA peptide nucleic acid probe, whereas cultivable cells were assessed by standard plating onto selective H. pylori medium. Cultivable H. pylori could not be detected at any time point, but the ability of H. pylori cells to incorporate, undergo morphological transformations, persist, and even agglomerate in biofilms for at least 31 days without a noticeable decrease in the total cell number (on average, the concentration was between 1.54 × 10 6 and 2.25 × 10 6 cells cm −2 ) or in the intracellular rRNA content may indicate that the loss of cultivability was due to entry into a viable but noncultivable state. Unlike previous results obtained for pure-culture H. pylori biofilms, shear stress did not negatively influence the numbers of H. pylori cells attached, suggesting that the autochthonous aquatic bacteria have an important role in retaining this pathogen in the sessile state, possibly by providing suitable microaerophilic environments or linking biomolecules to which the pathogen adheres. Therefore, biofilms appear to provide not only a safe haven for H. pylori but also a concentration mechanism so that subsequent sloughing releases a concentrated bolus of cells that might be infectious and that could escape routine grab sample microbiological analyses and be a cause of concern for public health.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3