Affiliation:
1. Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA.
Abstract
Work in this laboratory previously demonstrated that the tropism of different human immunodeficiency type 1 isolates for infection of human CD4+ continuous cell lines (e.g., T-cell lines and HeLa-CD4 transformants) versus primary macrophages is associated with parallel intrinsic fusogenic specificities of the corresponding envelope glycoproteins (Envs). For T-cell line-tropic isolates, it is well established that the target cell must also contain a human-specific fusion cofactor(s) whose identity is unknown. In this study, we tested the hypothesis that the Env fusion specificities underlying T-cell line versus macrophage tropism are determined by distinct cell type-specific fusion cofactors. We applied a recombinant vaccinia virus-based reporter gene assay for Env-CD4-mediated cell fusion; the LAV and Ba-L Envs served as prototypes for T-cell line-tropic and macrophage-tropic isolates, respectively. We examined CD4+ promyeloctic and monocytic cell lines that are infectible by T-cell line-tropic isolates and become susceptible to macrophage-tropic strains only after treatment with differentiating agents. We observed parallel changes in fusion specificity: untreated cells supported fusion by the LAV but not the Ba-L Env, whereas cells treated with differentiating agents acquired fusion competence for Ba-L. These results suggest that in untreated cells, the block to infection by macrophage-tropic isolates is at the level of membrane fusion; furthermore, the differential regulation of fusion permissiveness for the two classes of Envs is consistent with the existence of distinct fusion cofactors. To test this notion directly, we conducted experiments with transient cell hybrids formed between CD4-expressing nonhuman cells (murine NIH 3T3) and different human cell types. Hybrids formed with HeLa cells supported fusion by the LAV Env but not by the Ba-L Env, whereas hybrids formed with primary macrophages showed the opposite specificity; hybrids formed between HeLa cells and macrophages supported fusion by both Envs. These results suggest the existence of cell type-specific fusion cofactors selective for each type of Env, rather than fusion inhibitors for discordant Env-cell combinations. Finally, analyses based on recombinant protein expression and antibody blocking did not support the proposals by others that the CD44 or CD26 antigens are involved directly in the entry of macrophage-tropic isolates.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
103 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献