Human immunodeficiency virus Type 1 nucleocapsid protein (NCp7) directs specific initiation of minus-strand DNA synthesis primed by human tRNA(Lys3) in vitro: studies of viral RNA molecules mutated in regions that flank the primer binding site

Author:

Li X1,Quan Y1,Arts E J1,Li Z1,Preston B D1,de Rocquigny H1,Roques B P1,Darlix J L1,Kleiman L1,Parniak M A1,Wainberg M A1

Affiliation:

1. McGill University AIDS Center, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada.

Abstract

Retroviral reverse transcription starts near the 5' end of unspliced viral RNA at a sequence called the primer binding site (PBS), where the tRNA primer anneals to the RNA template for initiation of DNA synthesis. We have investigated the roles of NCp7 in annealing of primer tRNA(Lys3) to the PBS and in reverse transcriptase (RT) activity, using a cell-free reverse transcription reaction mixture consisting of various 5' viral RNA templates, natural primer tRNA(Lys3) or synthetic primer, human immunodeficiency virus type I (HIV-1) nucleocapsid protein (NCp7), and HIV-1 RT. In the presence of tRNA(Lys3), NCp7 was found to stimulate synthesis of minus-strand strong-stop DNA [(-)ssDNA], consistent with previous reports. However, specific DNA synthesis was observed only at a NCp7/RNA ratio similar to that predicted to be present in virions. Moreover, at these concentrations, NCp7 inhibited the synthesis of nonspecific reverse-transcribed DNA products, which are initiated because of self-priming by RNA templates. In contrast to results obtained with tRNA(Lys3) as primer, NCp7 inhibited the synthesis of (-)ssDNA products primed by an 18-nucleotide (nt) ribonucleotide (rPR), complementary to the PBS, even though rPR can initiate synthesis of such material in the absence of preannealing with NCp7. Primer placement band shift assays showed that NCp7 was necessary for efficient formation of the tRNA-RNA complex. In contrast, NCp7 was found to prevent formation of the rPR-RNA complex. Since NCp7 appears to exert opposite effects (annealing versus dissociation) on tRNA(Lys3) and rPR substrates, the non-PBS binding regions of the tRNA(Lys3) molecule may play a role in the annealing of tRNA to the template. We also investigated the roles of an A-rich loop upstream of the PBS, a 7-nt region immediately downstream of the PBS, and a 54-nt deletion further downstream of the PBS in interactions with tRNA(Lys3). We found that deletions in the 54-nt region that may prevent formation of the U5-leader stem prevented tRNA(Lys3) placement and priming, while deletions in the A-rich loop or the 7-nt sequence had relatively minor effects in this regard.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3