Sustained Signaling by Phospholipase C-γ Mediates Nerve Growth Factor-Triggered Gene Expression

Author:

Choi Deog-Young1,Toledo-Aral Juan Jose1,Segal Rosalind2,Halegoua Simon1

Affiliation:

1. Department of Neurobiology & Behavior, State University of New York at Stony Brook, Stony Brook, New York 11794-5230, 1 and

2. Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 021152

Abstract

ABSTRACT In contrast to conventional signaling by growth factors that requires their continual presence, a 1-min pulse of nerve growth factor (NGF) is sufficient to induce electrical excitability in PC12 cells due to induction of the peripheral nerve type 1 (PN1) sodium channel gene. We have investigated the mechanism for this triggered signaling pathway by NGF in PC12 cells. Mutation of TrkA at key autophosphorylation sites indicates an essential role for the phospholipase C-γ (PLC-γ) binding site, but not the Shc binding site, for NGF-triggered induction of PN1. In concordance with results with Trk mutants, drug-mediated inhibition of PLC-γ activity also blocks PN1 induction by NGF. Examination of the kinetics of TrkA autophosphorylation indicates that triggered signaling does not result from sustained activation and autophosphorylation of the TrkA receptor kinase, whose phosphorylation state declines rapidly after NGF removal. Rather, TrkA triggers an unexpectedly prolonged phosphorylation and activation of PLC-γ signaling that is sustained for up to 2 h. Prevention of the elevation of intracellular Ca 2+ levels using BAPTA-AM results in a block of PN1 induction by NGF. Sustained signaling by PLC-γ provides a means for differential neuronal gene induction after transient exposure to NGF.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3