Baculovirus Caspase Inhibitors P49 and P35 Block Virus-Induced Apoptosis Downstream of Effector Caspase DrICE Activation in Drosophila melanogaster Cells

Author:

Lannan Erica1,Vandergaast Rianna2,Friesen Paul D.21

Affiliation:

1. Microbiology Doctoral Training Program, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin—Madison, Madison, Wisconsin 53706

2. Institute for Molecular Virology, Department of Biochemistry

Abstract

ABSTRACT Baculoviruses induce widespread apoptosis in invertebrates. To better understand the pathways by which these DNA viruses trigger apoptosis, we have used a combination of RNA silencing and overexpression of viral and host apoptotic regulators to identify cell death components in the model system of Drosophila melanogaster . Here we report that the principal effector caspase DrICE is required for baculovirus-induced apoptosis of Drosophila DL-1 cells as demonstrated by RNA silencing. proDrICE was proteolytically cleaved and activated during infection. Activation was blocked by overexpression of the cellular inhibitor-of-apoptosis proteins DIAP1 and SfIAP but not by the baculovirus caspase inhibitor P49 or P35. Rather, the substrate inhibitors P49 and P35 prevented virus-induced apoptosis by arresting active DrICE through formation of stable inhibitory complexes. Consistent with a two-step activation mechanism, proDrICE was cleaved at the large/small subunit junction TETD 230 -G by a DIAP1-inhibitable, P49/P35-resistant protease and then at the prodomain junction DHTD 28 -A by a P49/P35-sensitive protease. Confirming that P49 targeted DrICE and not the initiator caspase DRONC, depletion of DrICE by RNA silencing suppressed virus-induced cleavage of P49. Collectively, our findings indicate that whereas DIAP1 functions upstream to block DrICE activation, P49 and P35 act downstream by inhibiting active DrICE. Given that P49 has the potential to inhibit both upstream initiator caspases and downstream effector caspases, we conclude that P49 is a broad-spectrum caspase inhibitor that likely provides a selective advantage to baculoviruses in different cellular backgrounds.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3