Determination of serum bactericidal activity against Escherichia coli by an automated photometric method

Author:

Crokaert F1,Lismont M J1,van der Linden M P1,Yourassowsky E1

Affiliation:

1. Department of Microbiology, Brugmann's University Hospital, Brussels, Belgium.

Abstract

The resistance of gram-negative bacteria to complement-mediated serum activity is supposedly an important virulence factor. However, the lack of standardization in the methods used to determine serum activity and the many definitions applied make the comparisons between studies very difficult. We developed a rapid photometric method that we compared with a classical killing one. Escherichia coli in the exponential phase of growth in brain heart infusion broth (final inoculum, 10(7) CFU/ml) at 35 degrees C was added to 50% human serum in Veronal buffer. Viable counts and automatic recording of the variations in the optical densities were obtained for 40 E. coli strains isolated from the stools of healthy adults. With the viable count method, 17 (42.5%) were susceptible (at least a 1 log CFU/ml decrease), 17 (42.5%) were resistant (a 0.6 log CFU/ml increase), 4 (10%) were intermediate (poorly growing inoculum or a decrease of less than 1 log CFU/ml), and 2 could not be classified (nonreproducible results). Agreement between both methods was observed for 87.5% of the stool strains. Eight reference strains of known susceptibilities were classified identically by both methods, leading to a final concordance rate of 89.6%. A total of 129 blood isolates were tested by the photometric method: 64 (49.6%) were resistant, 50 (38.8%) were susceptible 5 (3.9%) showed early regrowth, and 10 (7.7%) were not perfectly reproducible. Of these 129 blood isolates, 5 were also tested by the killing method: 37 (49%) were resistant, 32 (43%) were susceptible, and 6 (8%) were intermediate. The concordance rate between both assays was 89% for the blood isolates; when the minor discordances were ruled out, it was 97%. This automated method could be a useful screening tool for detecting resistance to serum in clinical trials and for studying the in vitro variations of this property.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3