Expression of the (recombinant) endogenous immunoglobulin heavy-chain locus requires the intronic matrix attachment regions

Author:

Oancea A E1,Berru M1,Shulman M J1

Affiliation:

1. Department of Immunology, University of Toronto, Ontario, Canada.

Abstract

The elements which regulate gene expression have traditionally been identified by their effects on reporter genes which have been transfected into cell lines or animals. It is generally assumed that these elements have a comparable role in expression of the corresponding endogenous locus. Nevertheless, several studies of immunoglobulin heavy-chain (IgH) gene expression have reported that the requirements for expressing IgH-derived transgenes differ from the requirements for expression of the endogenous IgH locus. Thus, although expression of transgenes requires multiple elements from the J(H)-C mu intron--the E mu core enhancer, the matrix attachment regions (MARs) which flank E mu, and several switch-associated elements--B-cell lines in which expression of the endogenous heavy-chain gene is maintained at the normal level in the absence of these intronic elements have occasionally been reported. Gene targeting offers an alternative method for assessing regulatory elements, one in which the role of defined segments of endogenous genes can be evaluated in situ. We have applied this approach to the IgH locus of a hybridoma cell line, generating recombinants which bear predetermined modifications in the functional, endogenous mu heavy-chain gene. Our analysis indicates the following. (i) Ninety-eight percent of the expression of the recombinant endogenous mu gene depends on elements in the MAR-E mu-MAR segment. (ii) Expression of the recombinant mu gene depends strongly on the MARs of the J(H)-C mu intron but not on the adjoining E mu core enhancer and switch regions; because our recombinant cell lines bear only a single copy of the mu gene, our results indicate that mu expression is activated by MAR elements lying within that same mu transcription unit. (iii) The MAR segment includes at least one activating element in addition to those defined previously by the binding of presumptive activating proteins in the nuclear matrix. (iv) Close association of the MARs with the E mu enhancer is not required for MAR-stimulated expression. (v) The other MARs in the IgH locus do not in their normal context provide the requisite MAR function.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference46 articles.

1. Characterization of immunoglobulin enhancer deletions in murine plasmacytomas;Aguilera R. J.;EMBO J.,1985

2. A Iymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes;Banerji J.;Cell,1983

3. A hit-and-run system for introducing mutations into the Ig H chain locus of hybridoma cells by homologous recombination;Bautista D.;J. Immunol.,1993

4. Nature of DNA sequences at the attachment regions of genes to the nuclear matrix;Boulikas T.;J. Cell. Biochem.,1993

5. An element in the endogenous IgH locus stimulates gene targeting in hybridoma cells;Buzina A.;Nucleic Acids Res.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3