Distinct Roles of Two Binding Sites for the Bovine Papillomavirus (BPV) E2 Transactivator on BPV DNA Replication

Author:

Gillette Thomas G.1,Borowiec James A.1

Affiliation:

1. Department of Biochemistry and Kaplan Comprehensive Cancer Center, New York University Medical Center, New York, New York 10016

Abstract

ABSTRACT The modulation of DNA replication by transcription factors was examined by using bovine papillomavirus type 1 (BPV). BPV replication in vivo requires two viral proteins: E1, an origin-binding protein, and E2, a transcriptional transactivator. In the origin, E1 interacts with a central region flanked by two binding sites for E2 (BS11 and BS12), of which only BS12 has been reported to be essential for replication in vivo. Using chemical interference and electrophoretic mobility shift assays, we found that the binding of E2 to each site stimulates the formation of distinct E1-origin complexes. A high-mobility C1 complex is formed by using critical E2 contacts to BS12 and E1 contacts to the dyad symmetry element. In contrast, interaction of E2 with the BS11 element on the other origin flank promotes the formation of the lower-mobility C3 complex. C3 is a novel species that resembles C2, a previously identified complex that is replication active and formed by E1 alone. The binding of E1 greatly differs in the C1 and C3 complexes, with E1 in the C1 complex limited to the origin dyad symmetry region and E1 in the C3 complex encompassing the region from the proximal edge of BS11 through the distal edge of BS12. We found that the presence of both E2-binding sites is necessary for wild-type replication activity in vivo, as well as for maximal production of the C3 complex. These results show that in the normal viral context, BS11 and BS12 play separate but synergetic roles in the initiation of viral DNA replication that are dependent on their location within the origin. Our data suggest a model in which the binding of E2 to each site sequentially stimulates the formation of distinct E1-origin complexes, leading to the replication-competent complex.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3