Quantitating the Magnitude of the Lymphocytic Choriomeningitis Virus-Specific CD8 T-Cell Response: It Is Even Bigger than We Thought

Author:

Masopust David1,Murali-Krishna Kaja1,Ahmed Rafi1

Affiliation:

1. Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322

Abstract

ABSTRACT Measuring the magnitudes and specificities of antiviral CD8 T-cell responses is critical for understanding the dynamics and regulation of adaptive immunity. Despite many excellent studies, the accurate measurement of the total CD8 T-cell response directed against a particular infection has been hampered by an incomplete knowledge of all CD8 T-cell epitopes and also by potential contributions of bystander expansion among CD8 T cells of irrelevant specificities. Here, we use several techniques to provide a more complete accounting of the CD8 T-cell response generated upon infection of C57BL/6 mice with lymphocytic choriomeningitis virus (LCMV). Eight days following infection, we found that 85 to 95% of CD8 T cells exhibit an effector phenotype as indicated by granzyme B, 1B11, CD62L, CD11a, and CD127 expression. We demonstrate that CD8 T-cell expansion is due to cells that divide >7 times, whereas heterologous viral infections only elicited <3 divisions among bystander memory CD8 T cells. Furthermore, we found that approximately 80% of CD8 T cells in spleen were specific for ten different LCMV-derived epitopes at the peak of primary infection. These data suggest that following a single LCMV infection, effector CD8 T cells divide ≥15 times and account for at least 80%, and possibly as much as 95%, of the CD8 T-cell pool. Moreover, the response targeted a very broad array of peptide major histocompatibility complexes (MHCs), even though we examined epitopes derived from only two of the four proteins encoded by the LCMV genome and C57BL/6 mice only have two MHC class I alleles. These data illustrate the potential enormity, specificity, and breadth of CD8 T-cell responses to viral infection and demonstrate that bystander activation does not contribute to CD8 T-cell expansion.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3