The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action

Author:

Várnai Anikó1ORCID,Umezawa Kiwamu2,Yoshida Makoto2,Eijsink Vincent G. H.1

Affiliation:

1. Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway

2. Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, Tokyo, Japan

Abstract

ABSTRACT Fungi secrete a set of glycoside hydrolases and oxidoreductases, including lytic polysaccharide monooxygenases (LPMOs), for the degradation of plant polysaccharides. LPMOs catalyze the oxidative cleavage of glycosidic bonds after activation by an external electron donor. So far, only flavin-dependent oxidoreductases (from the auxiliary activity [AA] family AA3) have been shown to activate LPMOs. Here, we present LPMO activation by a pyrroloquinoline-quinone (PQQ)-dependent pyranose dehydrogenase (PDH) from Coprinopsis cinerea , Cc PDH, the founding member of the recently discovered auxiliary activity family AA12. Cc PDH contains a C-terminal family 1 carbohydrate binding module (CBM1), an N-terminal family AA8 cytochrome domain, and a central AA12 dehydrogenase domain. We have studied the ability of full-length Cc PDH and its truncated variants to drive catalysis by two Neurospora crassa LPMOs. The results show that Cc PDH indeed can activate the C-1-oxidizing N. crassa LPMO 9F ( Nc LPMO9F) and the C-4-oxidizing Neurospora crassa LPMO 9C ( Nc LPMO9C), that this activation depends on the cytochrome domain, and that the dehydrogenase and the LPMO reactions are strongly coupled. The two tested Cc PDH-LPMO systems showed quite different efficiencies, and this difference disappeared upon the addition of free PQQ acting as a diphenol/quinone redox mediator, showing that LPMOs differ when it comes to their direct interactions with the cytochrome domain. Surprisingly, removal of the CBM domain from Cc PDH had a considerable negative impact on the efficiency of the Cc PDH-LPMO systems, suggesting that electron transfer in the vicinity of the substrate is beneficial. Cc PDH does not oxidize cello-oligosaccharides, which makes this enzyme a useful tool for studying cellulose-oxidizing LPMOs. IMPORTANCE Lytic polysaccharide monooxygenases (LPMOs) are currently receiving increasing attention because of their importance in degrading recalcitrant polysaccharides and their potential roles in biological processes, such as bacterial virulence. LPMO action requires an external electron donor, and fungi growing on biomass secrete various so-called glucose-methanol-choline (GMC) oxidoreductases, including cellobiose dehydrogenase, which can donate electrons to LPMOs. This paper describes how an enzyme not belonging to the GMC oxidoreductase family, Cc PDH, can activate LPMOs, and it provides new insights into the activation process by (i) describing the roles of individual Cc PDH domains (a dehydrogenase, a cytochrome, and a carbohydrate-binding domain), (ii) showing that the PDH and LPMO enzyme reactions are strongly coupled, (iii) demonstrating that LPMOs differ in terms of their efficiencies of activation by the same activator, and (iv) providing indications that electron transferring close to the substrate surface is beneficial for the overall efficiency of the Cc PDH-LPMO system.

Funder

Japan Society for the Promotion of Science

Norges Forskningsråd

MEXT | Japan Society for the Promotion of Science

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3