MUC7 20-Mer: Investigation of Antimicrobial Activity, Secondary Structure, and Possible Mechanism of Antifungal Action

Author:

Bobek Libuse A.1,Situ Hongsa1

Affiliation:

1. Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, New York 14214

Abstract

ABSTRACT This study was aimed at examining the spectrum of antimicrobial activity of MUC7 20-mer (N-LAHQKPFIRKSYKCLHKRCR-C; residues 32 to 51 of MUC7, the low-molecular-weight human salivary mucin, comprised of 357 residues) and comparing its antifungal properties to those of salivary histatin 5 (Hsn-5). We also examined the secondary structure of the 20-mer and the possible mechanism of its antifungal action. Our results showed that MUC7 20-mer displays potent killing activity against a variety of fungi and both gram-positive and gram-negative bacteria at micromolar concentrations. Time-dependent killing of Candida albicans and Cryptococcus neoformans by MUC7 20-mer and Hsn-5 indicated differences in killing rates between MUC7 20-mer and Hsn-5. The secondary structure prediction showed that MUC7 20-mer adopts an amphiphilic helix with distinguishable hydrophilic and hydrophobic faces (a characteristic that is associated with antimicrobial activity). In comparison to that of Hsn-5, the fungicidal activity of MUC7 20-mer against C. albicans seems to be independent of fungal cellular metabolic activity, as evidenced by its killing potency at a low temperature (4°C) and in the presence of inhibitors of oxidative phosphorylation in the mitochondrial system. Fluorescence microscopy showed the ability of MUC7 20-mer to cross the fungal cell membrane and to accumulate inside the cells. The internalization of MUC7 20-mer was inhibited by divalent cations. Confocal microscopy of cells doubly labeled with MUC7 20-mer and a mitochondrion-specific dye indicated that mitochondria are not the target of MUC7 20-mer for either C. albicans or C. neoformans .

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3