Differences between poliovirus empty capsids formed in vivo and those formed in vitro: a role for the morphopoietic factor

Author:

Putnak J R,Phillips B A

Abstract

Empty capsid species formed from the self- and extract-mediated assembly of poliovirus type 1 14S particles in vitro and procapsids isolated from virus-infected cells were subjected to isoelectric focusing in charge-free agarose gels. The empty capsid formed in the self-assembly reaction had an isoelectric point (pI) of 5.0, whereas procapsids and extract-assembled empty capsids focused at pH 6.8. Unreacted 14S particles focused at pH 4.8 to 5.0. The sedimentation coefficient (s20,w) and density of the empty capsid species were also determined. Procapsids had a density in CsCl of 1.31 g/cm3, whereas empty capsids formed by self- or extract-mediated assembly had a density of 1.29 g/cm3. Both extract-assembled empty capsids and procapsids had an s20,w of 75S, whereas self-assembled empty capsids had an s20,w of 71S. Self-assembled empty capsids were not converted to pI 6.8 empty capsids by incubation with poliovirus-infected HeLa cell extracts. The dissociated polypeptides of self-assembled empty capsids (pI 5.0) and procapsids (pI 6.8) behaved identically when analyzed by isoelectric focusing in the presence of 9 M urea and by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. These results suggest that infected cell extracts possess a factor that influences the final conformation of the empty shell (pI 6.8, 75S) formed from 14S particles and that this influences is exerted at the initiation step or during the polymerization reaction. A small amount of this activity (less than or equal to 20% of infected extracts) was detected in uninfected cells; the significance of this remains unknown.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3