Heterologous Expression of Mycobacterial Proteins in Saccharomyces cerevisiae Reveals Two Physiologically Functional 3-Hydroxyacyl-Thioester Dehydratases, HtdX and HtdY, in Addition to HadABC and HtdZ

Author:

Gurvitz Aner12,Hiltunen J. Kalervo2,Kastaniotis Alexander J.2

Affiliation:

1. Section of Physiology of Lipid Metabolism, Institute of Physiology, Center for Physiology, Pathophysiology and Immunology, Medical University of Vienna, Vienna, Austria

2. Department of Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland

Abstract

ABSTRACT We report on Mycobacterium tuberculosis Rv0241c and Rv3389c, representing two physiologically functional 3-hydroxyacyl-thioester dehydratases (Htd). These enzymes are potentially entrained in type 2 fatty acid synthase (FASII). Mycobacterial FASII is involved in the synthesis of mycolic acids, which are the major constituents of the protective layer around the pathogen, shielding it from noxious chemicals and the host's immune system. Mycolic acids are additionally associated with the virulence and resilience of M. tuberculosis . Here, Rv0241c and Rv3389c, which are distinct from the previously identified heterodimers Rv0635-Rv0636 (HadAB) and Rv0636-Rv0637 (HadBC) but also the homodimer Rv0130 (HtdZ), were identified by expressing the corresponding candidate open reading frames in Saccharomyces cerevisiae htd2 Δ cells lacking mitochondrial 3-hydroxyacyl-acyl carrier protein dehydratase activity, followed by scoring for phenotype rescue. The htd2 Δ mutant fails to produce sufficient levels of lipoic acid and does not respire or grow on nonfermentable carbon sources. Soluble protein extracts made from mutant htd2 Δ cells expressing mitochondrially targeted Rv0241c or Rv3389c contained 3-hydroxyacyl-thioester hydratase activity. Moreover, mutant yeast cells expressing Rv0241c or Rv3389c were able to recover their respiratory growth on glycerol medium and efficiently reduce 2,3,5-triphenyltetrazolium chloride. Additionally, expression of mitochondrial Rv0241c or Rv3389c in htd2 Δ cells also restored de novo lipoic acid synthesis to 92 and 40% of the level in the wild-type strain, respectively. We propose naming Rv0241c and Rv3389c as HtdX and HtdY, respectively, and discuss the implications of our finding with reference to Rv0098, a candidate mycobacterial FabZ homologue with intrinsic thioesterase and hydratase activities that lacks the eukaryotic-like hydratase-2 motif.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3