Group A Streptococcus Gene Expression in Humans and Cynomolgus Macaques with Acute Pharyngitis

Author:

Virtaneva Kimmo1,Graham Morag R.1,Porcella Stephen F.1,Hoe Nancy P.1,Su Hua1,Graviss Edward A.2,Gardner Tracie J.2,Allison James E.3,Lemon William J.4,Bailey John R.5,Parnell Michael J.5,Musser James M.1

Affiliation:

1. Laboratory of Human Bacterial Pathogenesis

2. Department of Pathology, Baylor College of Medicine, Houston, Texas 77030

3. Pediatric Medical Group, Houston, Texas 77098

4. Division of Human Cancer Genetics, Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210

5. Veterinary Branch, Rocky Mountain Laboratories, National Institute of AllergyInfectious Diseases, National Institutes of Health, Hamilton, Montana 59840

Abstract

ABSTRACT The molecular mechanisms used by group A Streptococcus (GAS) to survive on the host mucosal surface and cause acute pharyngitis are poorly understood. To provide new information about GAS host-pathogen interactions, we used real-time reverse transcription-PCR (RT-PCR) to analyze transcripts of 17 GAS genes in throat swab specimens taken from 18 pediatric patients with pharyngitis. The expression of known and putative virulence genes and regulatory genes (including genes in seven two-component regulatory systems) was studied. Several known and previously uncharacterized GAS virulence gene regulators were highly expressed compared to the constitutively expressed control gene proS . To examine in vivo gene transcription in a controlled setting, three cynomolgus macaques were infected with strain MGAS5005, an organism that is genetically representative of most serotype M1 strains recovered from pharyngitis and invasive disease episodes in North America and Western Europe. These three animals developed clinical signs and symptoms of GAS pharyngitis and seroconverted to several GAS extracellular proteins. Real-time RT-PCR analysis of throat swab material collected at intervals throughout a 12-day infection protocol indicated that expression profiles of a subset of GAS genes accurately reflected the profiles observed in the human pediatric patients. The results of our study demonstrate that analysis of in vivo GAS gene expression is feasible in throat swab specimens obtained from infected human and nonhuman primates. In addition, we conclude that the cynomolgus macaque is a useful nonhuman primate model for the study of molecular events contributing to acute pharyngitis caused by GAS.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3