Characterization of non-neutralizing human monoclonal antibodies that target the M1 and NP of influenza A viruses

Author:

Rijnink Willemijn Frederique1,Stadlbauer Daniel1,Puente-Massaguer Eduard12,Okba Nisreen M. A.12,Kirkpatrick Roubidoux Ericka13,Strohmeier Shirin1,Mudd Philip A.4ORCID,Schmitz Aaron4,Ellebedy Ali4,McMahon Meagan1ORCID,Krammer Florian125ORCID

Affiliation:

1. Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York, New York, USA

2. Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai , New York, New York, USA

3. Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai , New York, New York, USA

4. Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, Missouri, USA

5. Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai , New York, New York, USA

Abstract

ABSTRACT Improved broad-spectrum influenza virus vaccines are desperately needed to provide protection against both drifted seasonal and emerging pandemic influenza A viruses (IAVs). Antibody-based protection from influenza A virus-induced morbidity and mortality is traditionally associated with neutralizing antibodies. As such, vaccine efforts have solely focused on the hemagglutinin (HA) as a vaccine target; however, the HA is mutation prone resulting in the need for annual vaccine reformulation. Broad-spectrum vaccines could be achieved through non-neutralizing antibodies that target conserved influenza virus antigens. Here, we describe six human monoclonal antibodies (mAbs) isolated from two H3N2-infected donors that showed robust binding against the conserved internal nucleoprotein (NP) or matrix protein 1 (M1) of IAV strains. Despite the capacity for potent antigen binding, substantial morbidity was observed in mice prophylactically treated with these mAbs and then challenged with A/Netherlands/602/2009 (H1N1) or A/Switzerland/9715293/2013 (H3N2) viruses. While our findings need to be confirmed with a larger number of mAbs and with polyclonal serum, these findings suggest that human NP and M1 antibodies that are elicited following IAV infection/vaccination do not protect from substantial weight loss in the mouse model and imply that protection afforded targeting these antigens following vaccination/infection is most likely the result of cellular-based immunity. IMPORTANCE Currently, many groups are focusing on isolating both neutralizing and non-neutralizing antibodies to the mutation-prone hemagglutinin as a tool to treat or prevent influenza virus infection. Less is known about the level of protection induced by non-neutralizing antibodies that target conserved internal influenza virus proteins. Such non-neutralizing antibodies could provide an alternative pathway to induce broad cross-reactive protection against multiple influenza virus serotypes and subtypes by partially overcoming influenza virus escape mediated by antigenic drift and shift. Accordingly, more information about the level of protection and potential mechanism(s) of action of non-neutralizing antibodies targeting internal influenza virus proteins could be useful for the design of broadly protective and universal influenza virus vaccines.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

NIAID Centers of Excellence for Influenza Research and Response

NIAID CIVIC

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3