Identification of the Cellular Prohibitin 1/Prohibitin 2 Heterodimer as an Interaction Partner of the C-Terminal Cytoplasmic Domain of the HIV-1 Glycoprotein

Author:

Emerson Vanessa1,Holtkotte Denise1,Pfeiffer Tanya1,Wang I-Hsuan1,Schnölzer Martina2,Kempf Tore2,Bosch Valerie1

Affiliation:

1. Forschungsschwerpunkt Infektion und Krebs, F020

2. Funktionelle Proteomanalyse, B100, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany

Abstract

ABSTRACT Our studies aim to elucidate the functions carried out by the very long, and in its length highly conserved, C-terminal cytoplasmic domain (Env-CT) of the HIV-1 glycoprotein. Mass spectrometric analysis of cellular proteins bound to a tagged version of the HIV Env-CT led to the identification of the prohibitin 1 and 2 proteins (Phb1 and Phb2). These ubiquitously expressed proteins, which exist as stable heterodimers, have been shown to have multiple functions within cells and to localize to multiple cellular and extracellular compartments. The specificity of binding of the Phb1/Phb2 complex to the Env-CT was confirmed in various manners, including coimmunoprecipitation with authentic provirally encoded, full-length Env. Strong binding was dependent on Env residues 790 to 800 and could be severely inhibited by the double mutation L799R/L800Q but not by mutation of these amino acids individually. Analysis of the respective mutant virions revealed that their different abilities to bind Phb1/Phb2 correlated with their replicative properties. Thus, mutated virions with single mutations [HIV-Env-(L799R) and HIV-Env-(L800Q)] replicated similarly to wild-type HIV, but HIV-Env-(L799R/L800Q) virions, which cannot bind Phb1/Phb2, exhibited a cell-dependent replicative phenotype similar to that of HIV-Env-Tr712, lacking the entire Env-CT domain. Thus, replicative spread was achieved, although somewhat delayed, in “permissive” MT-4 cells but failed to occur in “nonpermissive” H9 T cells. These results point to binding of the Phb1/Phb2 complex to the Env-CT as being of importance for replicative spread in nonpermissive cells, possibly by modulating critical Phb-dependent cellular process(es).

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3