Gut microbial dysbiosis occurring during pulmonary fungal infection in rats is linked to inflammation and depends on healthy microbiota composition

Author:

Popovic Dusanka1,Kulas Jelena1,Tucovic Dina1,Popov Aleksandrov Aleksandra1,Malesevic Anastasija1,Glamoclija Jasmina2,Brdaric Emilija3,Sokovic Bajic Svetlana3,Golic Natasa3,Mirkov Ivana1,Tolinacki Maja3ORCID

Affiliation:

1. Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade , Belgrade, Serbia

2. Mycology Laboratory, Department of Plant Physiology, Institute for Biological Research “Sinisa Stankovic” – National Institute of the Republic of Serbia, University of Belgrade , Belgrade, Serbia

3. Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade , Belgrade, Serbia

Abstract

ABSTRACT While the effect of gut microbiota and/or inflammation on a distant body site, including the lungs (gut–lung axis), has been well characterized, data about the influence of lung microbiota and lung inflammation on gut homeostasis (lung–gut axis) are scarce. Using a well-characterized model of pulmonary infection with the fungus Aspergillus fumigatus , we investigated alterations in the lung and gut microbiota by next-generation sequencing of the V3–V4 regions of total bacterial DNA. Pulmonary inflammation due to the fungus A. fumigatus caused bacterial dysbiosis in both lungs and gut, but with different characteristics. While increased alpha diversity and unchanged bacterial composition were noted in the lungs, dysbiosis in the gut was characterized by decreased alpha diversity indices and modified bacterial composition. The altered homeostasis in the lungs allows the immigration of new bacterial species of which 41.8% were found in the feces, indicating that some degree of bacterial migration from the gut to the lungs occurs. On the contrary, the dysbiosis occurring in the gut during pulmonary infection was a consequence of the local activity of the immune system. In addition, the alteration of gut microbiota in response to pulmonary infection depends on the bacterial composition before infection, as no changes in gut bacterial microbiota were detected in a rat strain with diverse gut bacteria. The data presented support the existence of the lung–gut axis and provide additional insight into this mechanism. IMPORTANCE Data regarding the impact of lung inflammation and lung microbiota on GIT are scarce, and the mechanisms of this interaction are still unknown. Using a well-characterized model of pulmonary infection caused by the opportunistic fungus Aspergillus fumigatus , we observed bacterial dysbiosis in both the lungs and gut that supports the existence of the lung–gut axis.

Funder

Ministry of Science, Technological Development and Innovations, Republic of Serbia

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3