In vivo efficacy of pitavastatin combined with itraconazole against Aspergillus fumigatus in silkworm models

Author:

Majima Hidetaka1ORCID,Arai Teppei1,Kamei Katsuhiko23,Watanabe Akira1ORCID

Affiliation:

1. Division of Clinical Research, Medical Mycology Research Center, Chiba University , Chiba, Japan

2. Department of Infectious Disease, Japanese Red Cross Ishinomaki Hospital , Ishinomaki, Japan

3. Division of Infection Control and Prevention, Medical Mycology Research Center, Chiba University , Chiba, Japan

Abstract

ABSTRACT Azole resistance in Aspergillus fumigatus is a worldwide concern and new antifungal drugs are required to overcome this problem. Statin, a 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor, has been reported to suppress the growth of A. fumigatus , but little is known about its in vivo antifungal effect against A. fumigatus . In this study, we evaluated the in vivo efficacy of pitavastatin (PIT) combined with itraconazole (ITC) against azole-susceptible and azole-resistant strains with silkworm models. Prolongation of survival was confirmed in the combination-therapy (PIT and ITC) group compared to the no-treatment group in both azole-susceptible and azole-resistant strain models. Furthermore, when the azole-susceptible strain was used, the combination-therapy resulted in a higher survival rate than with ITC alone. Histopathological analysis of the silkworms revealed a reduction of the hyphal amount in both azole-susceptible and azole-resistant strain models. Quantitative evaluation of fungal DNA by qPCR in azole-susceptible strain models clarified the reduction of fungal burden in the combination-therapy group compared with the no-treatment group and ITC-alone group. These results indicate that the efficacy of PIT was enhanced when combined with ITC in vivo . As opposed to most statins, PIT has little drug–drug interaction with azoles in humans and can be used safely with ITC. This combination therapy may be a promising option as an effective treatment in clinical settings in the future. IMPORTANCE Azole resistance among A. fumigatus isolates has recently been increasingly recognized as a cause of treatment failure, and alternative antifungal therapies are required to overcome this problem. Our study shows the in vivo efficacy of PIT combined with ITC against A. fumigatus using silkworm models by several methods including evaluation of survival rates, histopathological analysis, and assessment of fungal burden. Contrary to most statins, PIT can be safely administered with azoles because of less drug–drug interactions, so this study should help us to verify how to make use of the drug in clinical settings in the future.

Funder

Japan Agency for Medical Research and Development

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3