Involvement of 2-deoxyglucose-6-phosphate phosphatases in facilitating resilience against ionic and osmotic stress in Saccharomyces cerevisiae

Author:

Awasthy Chinmayee1ORCID,Hefny Zeinab Abdelmoghis1,Van Genechten Wouter1ORCID,Himmelreich Uwe2ORCID,Van Dijck Patrick1ORCID

Affiliation:

1. Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium

2. Biomedical MRI/MoSAIC Lab, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium

Abstract

ABSTRACT The Saccharomyces cerevisiae DOG genes, DOG1 and DOG2 , encode for 2-deoxyglucose-6-phosphate phosphatases. These enzymes of the haloacid dehalogenase superfamily are known to utilize the non-natural 2-deoxyglucose-6-phosphate as their substrate. However, their physiological substrate and hence their biological role remain elusive. In this study, we investigated their potential role as enzymes in biosynthesizing glycerol through an alternative pathway, which involves the dephosphorylation of dihydroxyacetone phosphate into dihydroxyacetone, as opposed to the classical pathway which utilizes glycerol 3-phosphate. Overexpression of DOG1 or DOG2 rescued the osmotic and ionic stress-sensitive phenotype of gpp1∆ gpp2∆ or gpd1∆ gpd2∆ mutants, both affected in the production of glycerol. While small amounts of glycerol were observed in the DOG overexpression strains in the gpp1∆ gpp2∆ background, no glycerol was detected in the gpd1∆ gpd2∆ mutant background. This indicates that overexpression of the DOG enzymes can rescue the osmosensitive phenotype of the gpd1∆ gpd2∆ mutant independent of glycerol production. We also did not observe a drop in glycerol levels in the gpp1∆ gpp2∆ dog1∆ dog2∆ as compared to the gpp1∆ gpp2∆ mutant, indicating that the Dog enzymes are not involved in glycerol biosynthesis. This indicates that Dog enzymes have a distinct substrate and their function within the cell remains undiscovered. IMPORTANCE Yeast stress tolerance is an important characteristic that is studied widely, not only regarding its fundamental insights but also for its applications within the biotechnological industry. Here, we investigated the function of two phosphatase encoding genes, DOG1 and DOG2 , which are induced as part of the general stress response pathway, but their natural substrate in the cells remains unclear. They are known to dephosphorylate the non-natural substrate 2-deoxyglucose-6-phosphate. Here, we show that overexpression of these genes overcomes the osmosensitive phenotype of mutants that are unable to produce glycerol. However, in these overexpression strains, very little glycerol is produced indicating that the Dog enzymes do not seem to be involved in a previously predicted alternative pathway for glycerol production. Our work shows that overexpression of the DOG genes may improve osmotic and ionic stress tolerance in yeast.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3