Flying microbes—survival in the extreme conditions of the stratosphere during a stratospheric balloon flight experiment

Author:

Heitkämper Tim1,Roth Raphael1,Harteneck Stephan2,Berger Felix1,Salam Sonya1,Fey-Du Chunyu1,Flöck Christopher1,Tschierske Niclas1,Vonderbank Vincent1,Martin Alexander1,Erren Sebastian1,Zimmermann Joel1,Lutz Mike1,Kujala Katharina3ORCID

Affiliation:

1. FH Aachen, Faculty 03 Chemistry and Biotechnology/Faculty 10 Energy Technology, Jülich, Germany

2. FH Vorarlberg, Faculty of Business Administration, Dornbirn, Austria

3. University of Oulu, Water, Energy and Environmental Engineering Research Unit, Oulu, Finland

Abstract

ABSTRACT Earth’s stratosphere is characterized by hypobaric conditions, low temperatures, and high intensities of ultraviolet (UV) and cosmic radiation as well as low water and nutrient availability. While it is not considered a permanent habitat for microorganisms, they can be transported to the stratosphere by storms, volcanic action, or human activity. The impact of those extreme conditions on microorganisms and their survival were tested by sending a sample gondola to the stratosphere. The sample gondola was built to allow exposure of Bacillus subtilis endospores at different angles to the sun. It moreover had holders for three environmental samples to test the effect of stratospheric conditions on complex microbial communities. The gondola attached to a stratospheric balloon was launched near Kiruna, Sweden, ascended to ~25 km, and drifted eastward for ~200 km. Samples were exposed to pressures as low as 2 kPa and temperatures as low as −50°C as well as high UV radiation. Survival rates of B. subtilis were determined by comparing the numbers of colony-forming units (CFUs) for the different exposure angles. Survival was negatively correlated with exposure angle, indicating the significant impact of UV radiation. The effect of stratospheric conditions on environmental samples was assessed by comparing most probable numbers, microbial community composition, and substrate-use profiles to controls that had stayed on the ground. Cultivation was possible from all samples with survival rates of at least 1%, and differences in community composition were observed. Survival of environmental microorganisms might have been supported by the sample matrix, which provided protection from radiation and desiccation. IMPORTANCE Earth's stratosphere is a hostile environment that has challenged microbial survival. We set out to test the effect of stratosphere exposure on survival of single species ( Bacillus subtilis ) and complex microbial communities from soils and sediment. B. subtilis survival was strongly impacted by sun exposure, i.e., ultraviolet (UV) radiation, with only 1% survival at full sun exposure. Complex microbial communities had high survival rates, and the soil or sediment matrix may have provided protection against radiation and desiccation, supporting the survival of environmental microorganisms.

Funder

FH Aachen University of Applied Sciences Funding for student projects

Research Council of Finland

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3